Selective reduction of nitric oxide by methane on H-form zeolite catalysts in oxygen-rich atmosphere

Katsunori Yogo, Michiaki Umeno, Hirotake Watanabe and Eiichi Kikuchi ¹

Department of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169, Japan

Received 9 December 1992; accepted 17 March 1993

Selective reduction of NO by CH₄ in the presence of excess oxygen was investigated using H-form zeolite catalysts. H-ZSM-5, H-ferrierite, and H-mordenite showed high catalytic activity and selectivity. On the contrary, H-USY and Al₂O₃ were not effective for this reaction. Both NO–CH₄ and O₂–CH₄ reaction hardly proceeded on H-ZSM-5. Higher NO_x conversion was obtained in the NO₂–CH₄ and NO₂–CH₄ systems than in the NO–O₂–CH₄ system under high GHSV condition. It seemed that NO₂ plays an important role for selective reduction of NO by CH₄ on H-form zeolites.

Keywords: Nitric oxide; selective reduction; methane; zeolite

1. Introduction

Recently, selective catalytic reduction of NO by hydrocarbons in oxygen-rich atmosphere has attracted considerable attention as a new type of reaction alternative for the traditional NH₃-SCR process. This reaction has been reported to proceed on various cation-exchanged zeolites [1–5], metallosilicates [6,7], Al₂O₃ [8,9] and SiO₂-Al₂O₃[10].

Iwamoto et al. [11] and Hamada et al. [12] have studied the reduction of NO by various hydrocarbons in the presence of oxygen on Cu-ZSM-5 and Al_2O_3 catalysts, respectively. They have classified reductants into two groups, selective (C_2H_4 , C_3H_6 , C_3H_8 , C_4H_8), and non-selective (H_2 , CO, CH₄, C_2H_6) reductants for NO reduction in the presence of O_2 [13]. The CH₄– O_2 reaction proceeded predominantly and the NO–CH₄ reaction hardly proceeded on Cu-ZSM-5 and Al_2O_3 . It has been accepted that CH₄ is not effective for selective reduction.

However, hydrocarbon in the exhaust from a gas-cogeneration system is mainly CH₄. Therefore, it is expected to develop a catalyst which is active for selective reduction of NO by CH₄ in oxygen-rich atmosphere. Recently, Li and Armor [14]

¹ To whom correspondence should be addressed.

have reported that selective reduction by CH_4 proceeds on Co-ZSM-5. In our previous study, we have also found that Ga-ZSM-5 shows high catalytic activity and extremely high selectivity for reduction of NO by CH_4 or C_2H_6 [15]. We have recently found that various H-form zeolite catalysts are also active and fairly selective for this reaction. In this paper, we will report the catalytic properties of H-form zeolites and the role of O_2 for selective reduction of NO by CH_4 .

2. Experimental

Zeolites used in this study were ZSM-5 (molar SiO₂/Al₂O₃ ratio, 23.3), mordenite (19.9), ferrierite (17.8), and USY (14.5), supplied by Tosoh Corporation. Alumina, as a reference catalyst, was obtained from Catalysts & Chemical Ind. Co.

Measurements of catalytic activity were conducted by use of a fixed-bed flow reactor. A mixture of 1000 ppm NO (or NO_2), 10% O_2 , and 1000 ppm CH₄ was fed to 0.1–0.5 g catalyst at a rate of $100 \, \mathrm{cm}^3 (\mathrm{STP}) \, \mathrm{min}^{-1}$. After reaching steady-state, effluent gases were analyzed by gas chromatography and chemiluminescence detection of NO_x . The catalytic activity was evaluated by the level of NO conversion to N_2 .

3. Results and discussion

Fig. 1 shows the temperature dependence of catalytic activities of various H-form zeolites and Al₂O₃ for NO reduction by CH₄. Among these catalysts, H-ZSM-5 showed the highest activity at 500°C. H-USY was inactive under these

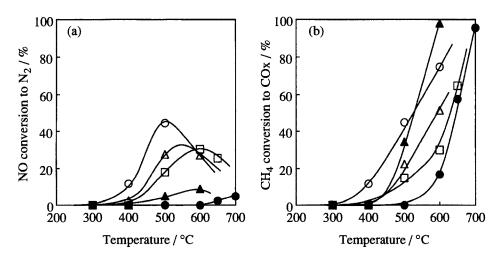


Fig. 1. Variation in NO conversion (a) and CH₄ conversion (b) on various zeolites as a function of reaction temperature. (○) H-ZSM-5; (△) H-mordenite; (□) H-ferrierite; (♠) H-USY; (♠)Al₂O₃. NO, 1000 ppm; CH₄, 1000 ppm; O₂, 10%; total flow rate, 100 cm³ min⁻¹; catalyst weight, 0.5 g.

reaction conditions, and its activity was similar to that of Al₂O₃. The CH₄-O₂ reaction was predominant and NO reduction hardly proceeded on these catalysts.

The ratio of NO conversion to CH₄ conversion is a measure of selectivity. As shown in fig. 2, H-ferrierite was most selective and the order of the selectivity for this reaction on these zeolites was as follows:

H-ferrierite > H-mordenite > H-ZSM-5 >> H-2USY.

H-ferrierite exhibited the lowest activity for the CH₄-O₂ reaction, resulting in high selectivity for NO reduction. Although a high selectivity of Al₂O₃ catalyst for NO reduction by C₃H₈ has been reported [2], the selectivity for NO reduction by CH₄ was extremely low. On the contrary, NO was selectively reduced on H-ZSM-5, H-mordenite, and H-ferrierite.

It has been reported by Hamada and co-workers [2] that the acidity of catalysts is one of the important factors which control the catalytic activity for selective reduction of NO. Fig. 3 shows NH₃-TPD spectra of various zeolites used in this study. H-USY showed very small acidity with weak acid strength, suggesting that the low catalytic activity of H-USY is probably due to its poor acidity.

Fig. 4 shows the catalytic activities of H-ZSM-5 for conversions of NO to N_2 and CH_4 to CO_x in various reaction temperatures. The NO- CH_4 reaction hardly proceeded at all temperatures in the absence of O_2 , showing that NO reduction was promoted by O_2 . Furthermore, CH_4 oxidation did not proceed below 500°C in the absence of NO. Since NO reduction occurred under the conditions where the CH_4 - O_2 reaction did not proceed, NO_2 should be concerned in selective reduction. All the zeolite catalysts used in this study were inactive for reduction of NO with CH_4 in the absence of O_2 and for oxidation of CH_4 in the absence of NO. It has also

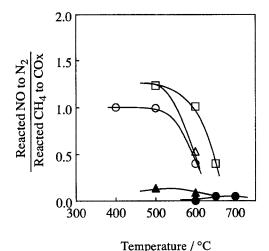


Fig. 2. Relationships between the ratio of reacted NO to consumed CH₄ and reaction temperature. (○) H-ZSM-5; (△) H-mordenite; (□) H-ferrierite; (●) H-USY; (▲) Al₂O₃. NO, 1000 ppm; CH₄, 1000 ppm; O₂ 10%; total flow rate, 100 cm³ min⁻¹; catalyst weight, 0.5 g.

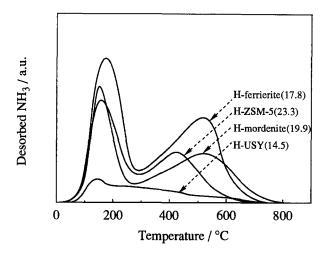


Fig. 3. NH₃-TPD spectra of various zeolites.

been reported by Hamada and co-workers [16] that selective reduction of NO with C_3H_8 on Al_2O_3 and H-form zeolites proceeds via NO_2 – C_3H_8 reaction and that high selectivity was attributable to NO_2 – C_3H_8 reaction and poor activity of these catalysts for C_3H_8 oxidation by O_2 .

In fig. 5, we compare the level of NO_x conversion to N_2 as a function of reciprocal GHSV. Higher NO_x conversion was obvious in the NO_2 – O_2 – CH_4 and NO_2 – CH_4 systems than in the NO_2 – CH_4 system in high GHSV condition. In the latter system, NO conversion seems to show an induction period. These results

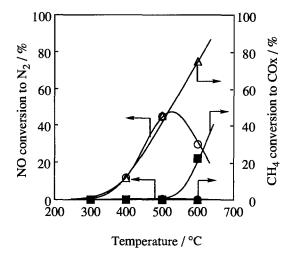


Fig. 4. Variation in NO conversion and CH₄ conversion on H-ZSM-5 as a function of reaction temperature. (○) NO conversion in NO-CH₄-O₂ reaction; (△) CH₄ conversion in NO-CH₄-O₂ reaction; (▲) NO conversion in NO-CH₄ reaction; (▲) CH₄ conversion in NO-CH₄ reaction; (■) CH₄ conversion in CH₄-O₂ reaction.

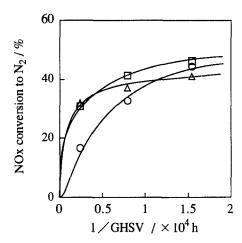


Fig. 5. Relationships between NO_x conversion and GHSV on H-ZSM-5. (\bigcirc) NO, 1000 ppm; CH₄, 1000 ppm; O₂, 10%; (\triangle) NO₂, 1000 ppm; CH₄, 1000 ppm; O₂ 0%; (\square) NO₂, 1000 ppm; CH₄, 1000 ppm; O₂, 10%; total flow rate, 100 cm³ min⁻¹; catalyst weight, 0.1–0.5 g; reaction temperature, 500 °C.

lead us to deduce that the first step is NO oxidation to NO₂, which further reacts with CH₄ to give N₂, CO_x, and H₂O, similarly to the reduction of NO_x by C₃H₈ on H-form zeolites [16].

We conclude from these results that reduction of NO proceeds on various H-form zeolites even when CH₄ is used as reductant, and CH₄ can be an effective reductant for selective reduction of NO, and that NO₂ plays an important role in the selective reduction of NO by CH₄.

References

- [1] S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno and M. Iwamato, Appl. Catal. 70 (1991) L1.
- [2] H. Hamada, Y. Kintaichi, M. Sasaki, T. Itoh and M. Tabata, Appl. Catal. 64 (1990) L1.
- [3] S. Sato, H. Hirabayashi, H. Yahiro, N. Mizuno and M. Iwamato, Catal. Lett. 12 (1992) 193.
- [4] M. Misono and K. Kondo, Chem. Lett. (1991) 1001.
- [5] K. Yogo, S. Tanaka, M. Ihara, T. Hishiki and E. Kikuchi, Chem. Lett. (1992) 1025.
- [6] E. Kikuchi, K. Yogo, S. Tanaka and M. Abe, Chem. Lett. (1991) 1063.
- [7] T. Inui, S. Iwamoto, S. Kojo and T. Yoshida, Catal. Lett. 13 (1992) 87.
- [8] Y. Kintaichi, H. Hamada, M. Tabata, M. Sasaki and T. Ito, Catal. Lett. 6 (1990) 239.
- [9] Y. Torikai, H. Yahiro, N. Mizuno and M. Iwamato, Catal. Lett. 9 (1992) 91.
- [10] H. Hosose, H. Yahiro, N. Mizuno and M. Iwamato, Chem. Lett. (1991) 1859.
- [11] M. Iwamoto, H. Yahiro, Y. Yu-u, S. Shundo and N. Mizuno, Shokubai 32 (1990) 430.
- [12] H. Hamada, Y. Kintaichi, M. Tabata, M. Sasaki and T. Itoh, Shokubai 33 (1991) 59.
- [13] M. Iwamoto and H. Hamada, Catal. Today 10 (1991) 57.
- [14] Y. Li and J.N. Armor, Appl. Catal. B 1 (1992) L31.
- [15] K. Yogo, M. Ihara, I. Terasaki and E. Kikuchi, Chem. Lett. (1993) 229.
- [16] M. Sasaki, H. Hamada, Y. Kintaichi and I. Ito, Catal. Lett. 15 (1992) 297.